Termination of the given ITRSProblem could not be shown:



ITRS
  ↳ ITRStoQTRSProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

Cond_b14(TRUE, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, -@z(sv23_37, sv14_14), +@z(sv24_38, 1@z))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(&&(>=@z(sv23_37, sv14_14), <@z(1@z, sv14_14)), sv14_14, sv23_37, sv24_38)

The set Q consists of the following terms:

Cond_b14(TRUE, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B15(sv14_14, sv23_37, sv24_38) → MINUS_INT(sv23_37, sv14_14)
B15(sv14_14, sv23_37, sv24_38) → PLUS_INT(pos(s(0)), sv24_38)
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
B14(sv14_14, sv23_37, sv24_38) → AND(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14))
B14(sv14_14, sv23_37, sv24_38) → GREATEREQ_INT(sv23_37, sv14_14)
B14(sv14_14, sv23_37, sv24_38) → LESS_INT(pos(s(0)), sv14_14)
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
LESS_INT(pos(s(x)), pos(s(y))) → LESS_INT(pos(x), pos(y))
LESS_INT(neg(s(x)), neg(s(y))) → LESS_INT(neg(x), neg(y))

The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B15(sv14_14, sv23_37, sv24_38) → MINUS_INT(sv23_37, sv14_14)
B15(sv14_14, sv23_37, sv24_38) → PLUS_INT(pos(s(0)), sv24_38)
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
B14(sv14_14, sv23_37, sv24_38) → AND(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14))
B14(sv14_14, sv23_37, sv24_38) → GREATEREQ_INT(sv23_37, sv14_14)
B14(sv14_14, sv23_37, sv24_38) → LESS_INT(pos(s(0)), sv14_14)
MINUS_INT(pos(x), pos(y)) → MINUS_NAT(x, y)
MINUS_INT(neg(x), neg(y)) → MINUS_NAT(y, x)
MINUS_INT(neg(x), pos(y)) → PLUS_NAT(x, y)
MINUS_INT(pos(x), neg(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
LESS_INT(pos(s(x)), pos(s(y))) → LESS_INT(pos(x), pos(y))
LESS_INT(neg(s(x)), neg(s(y))) → LESS_INT(neg(x), neg(y))

The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 13 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LESS_INT(neg(s(x)), neg(s(y))) → LESS_INT(neg(x), neg(y))

The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LESS_INT(neg(s(x)), neg(s(y))) → LESS_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LESS_INT(neg(s(x)), neg(s(y))) → LESS_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

LESS_INT(neg(s(x)), neg(s(y))) → LESS_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(LESS_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LESS_INT(pos(s(x)), pos(s(y))) → LESS_INT(pos(x), pos(y))

The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LESS_INT(pos(s(x)), pos(s(y))) → LESS_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LESS_INT(pos(s(x)), pos(s(y))) → LESS_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

LESS_INT(pos(s(x)), pos(s(y))) → LESS_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(LESS_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(neg(s(x)), neg(s(y))) → GREATEREQ_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATEREQ_INT(pos(s(x)), pos(s(y))) → GREATEREQ_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATEREQ_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)

The TRS R consists of the following rules:

Cond_b14(true, sv14_14, sv23_37, sv24_38) → b15(sv14_14, sv23_37, sv24_38)
b15(sv14_14, sv23_37, sv24_38) → b10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
b10(sv14_14, sv23_37, sv24_38) → b14(sv14_14, sv23_37, sv24_38)
b14(sv14_14, sv23_37, sv24_38) → Cond_b14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), neg(0)) → false
less_int(neg(0), pos(0)) → false
less_int(neg(0), neg(0)) → false
less_int(pos(0), pos(s(y))) → true
less_int(neg(0), pos(s(y))) → true
less_int(pos(0), neg(s(y))) → false
less_int(neg(0), neg(s(y))) → false
less_int(pos(s(x)), pos(0)) → false
less_int(neg(s(x)), pos(0)) → true
less_int(pos(s(x)), neg(0)) → false
less_int(neg(s(x)), neg(0)) → true
less_int(pos(s(x)), neg(s(y))) → false
less_int(neg(s(x)), pos(s(y))) → true
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
less_int(neg(s(x)), neg(s(y))) → less_int(neg(x), neg(y))

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
Positions in right side of the pair: Pair: B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
QDP
                        ↳ RemovalProof
                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38, x_removed) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(x_removed, sv24_38), x_removed)
B10(sv14_14, sv23_37, sv24_38, x_removed) → B14(sv14_14, sv23_37, sv24_38, x_removed)
B14(sv14_14, sv23_37, sv24_38, x_removed) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(x_removed, sv14_14)), sv14_14, sv23_37, sv24_38, x_removed)
COND_B14(true, sv14_14, sv23_37, sv24_38, x_removed) → B15(sv14_14, sv23_37, sv24_38, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
Positions in right side of the pair: Pair: B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
QDP
                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38, x_removed) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(x_removed, sv24_38), x_removed)
B10(sv14_14, sv23_37, sv24_38, x_removed) → B14(sv14_14, sv23_37, sv24_38, x_removed)
B14(sv14_14, sv23_37, sv24_38, x_removed) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(x_removed, sv14_14)), sv14_14, sv23_37, sv24_38, x_removed)
COND_B14(true, sv14_14, sv23_37, sv24_38, x_removed) → B15(sv14_14, sv23_37, sv24_38, x_removed)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38) at position [0] we obtained the following new rules [LPAR04]:

B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x0)))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), less_int(pos(s(0)), neg(s(x1)))), neg(s(x1)), neg(s(x0)), y2)
B14(pos(0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), neg(0), y2)
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(pos(0), neg(s(x0)), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(0))), pos(0), neg(s(x0)), y2)
B14(pos(0), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), pos(x0), y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(0), neg(s(x0)), y2) → COND_B14(and(false, less_int(pos(s(0)), neg(0))), neg(0), neg(s(x0)), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
QDP
                            ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x0)))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), less_int(pos(s(0)), neg(s(x1)))), neg(s(x1)), neg(s(x0)), y2)
B14(pos(0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), neg(0), y2)
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(pos(0), neg(s(x0)), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(0))), pos(0), neg(s(x0)), y2)
B14(pos(0), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), pos(x0), y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(0), neg(s(x0)), y2) → COND_B14(and(false, less_int(pos(s(0)), neg(0))), neg(0), neg(s(x0)), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x0)))), pos(s(x0)), pos(0), y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), less_int(pos(s(0)), neg(s(x1)))), neg(s(x1)), neg(s(x0)), y2)
B14(pos(0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), neg(0), y2)
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(pos(0), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), pos(x0), y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x0)))), pos(s(x0)), pos(0), y2) at position [0,1] we obtained the following new rules [LPAR04]:

B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), less_int(pos(s(0)), neg(s(x1)))), neg(s(x1)), neg(s(x0)), y2)
B14(pos(0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), neg(0), y2)
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(pos(0), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), pos(x0), y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), less_int(pos(s(0)), neg(s(x1)))), neg(s(x1)), neg(s(x0)), y2) at position [0,1] we obtained the following new rules [LPAR04]:

B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B14(pos(0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), neg(0), y2)
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(pos(0), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), pos(x0), y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B14(pos(0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), neg(0), y2) at position [0,1] we obtained the following new rules [LPAR04]:

B14(pos(0), neg(0), y2) → COND_B14(and(true, false), pos(0), neg(0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(pos(0), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), pos(x0), y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(0), neg(0), y2) → COND_B14(and(true, false), pos(0), neg(0), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
QDP
                                                ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(0), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), pos(x0), y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B14(pos(0), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), pos(0))), pos(0), pos(x0), y2) at position [0,1] we obtained the following new rules [LPAR04]:

B14(pos(0), pos(x0), y2) → COND_B14(and(true, false), pos(0), pos(x0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(0), pos(x0), y2) → COND_B14(and(true, false), pos(0), pos(x0), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
QDP
                                                        ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), neg(x0), y2) at position [0,1] we obtained the following new rules [LPAR04]:

B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(s(0)), pos(s(x1)))), pos(s(x1)), pos(s(x0)), y2) at position [0,1] we obtained the following new rules [LPAR04]:

B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
QDP
                                                                    ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
and(true, false) → false
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, true) → true
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B14(pos(0), y1, y2) → COND_B14(and(greatereq_int(y1, pos(0)), false), pos(0), y1, y2) at position [0] we obtained the following new rules [LPAR04]:

B14(pos(0), neg(0), y1) → COND_B14(and(true, false), pos(0), neg(0), y1)
B14(pos(0), neg(s(x0)), y1) → COND_B14(and(false, false), pos(0), neg(s(x0)), y1)
B14(pos(0), pos(x0), y1) → COND_B14(and(true, false), pos(0), pos(x0), y1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
QDP
                                                                        ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(0), neg(0), y1) → COND_B14(and(true, false), pos(0), neg(0), y1)
B14(pos(0), neg(s(x0)), y1) → COND_B14(and(false, false), pos(0), neg(s(x0)), y1)
B14(pos(0), pos(x0), y1) → COND_B14(and(true, false), pos(0), pos(x0), y1)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
and(true, false) → false
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, true) → true
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
QDP
                                                                            ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
and(true, false) → false
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, true) → true
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
QDP
                                                                                ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
and(true, false) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B14(neg(0), y1, y2) → COND_B14(and(greatereq_int(y1, neg(0)), false), neg(0), y1, y2) at position [0] we obtained the following new rules [LPAR04]:

B14(neg(0), neg(s(x0)), y1) → COND_B14(and(false, false), neg(0), neg(s(x0)), y1)
B14(neg(0), pos(x0), y1) → COND_B14(and(true, false), neg(0), pos(x0), y1)
B14(neg(0), neg(0), y1) → COND_B14(and(true, false), neg(0), neg(0), y1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
QDP
                                                                                    ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
B14(neg(0), neg(s(x0)), y1) → COND_B14(and(false, false), neg(0), neg(s(x0)), y1)
B14(neg(0), pos(x0), y1) → COND_B14(and(true, false), neg(0), pos(x0), y1)
B14(neg(0), neg(0), y1) → COND_B14(and(true, false), neg(0), neg(0), y1)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
and(true, false) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
QDP
                                                                                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
and(true, false) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B14(neg(x1), pos(x0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x1))), neg(x1), pos(x0), y2) at position [0] we obtained the following new rules [LPAR04]:

B14(neg(0), pos(y1), y2) → COND_B14(and(true, false), neg(0), pos(y1), y2)
B14(neg(s(x1)), pos(y1), y2) → COND_B14(and(true, false), neg(s(x1)), pos(y1), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
QDP
                                                                                            ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
B14(neg(0), pos(y1), y2) → COND_B14(and(true, false), neg(0), pos(y1), y2)
B14(neg(s(x1)), pos(y1), y2) → COND_B14(and(true, false), neg(s(x1)), pos(y1), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
and(true, false) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
QDP
                                                                                                ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
and(true, false) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B14(neg(x0), neg(0), y2) → COND_B14(and(true, less_int(pos(s(0)), neg(x0))), neg(x0), neg(0), y2) at position [0] we obtained the following new rules [LPAR04]:

B14(neg(0), neg(0), y1) → COND_B14(and(true, false), neg(0), neg(0), y1)
B14(neg(s(x1)), neg(0), y1) → COND_B14(and(true, false), neg(s(x1)), neg(0), y1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
QDP
                                                                                                    ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
B14(neg(0), neg(0), y1) → COND_B14(and(true, false), neg(0), neg(0), y1)
B14(neg(s(x1)), neg(0), y1) → COND_B14(and(true, false), neg(s(x1)), neg(0), y1)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
and(true, false) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
QDP
                                                                                                        ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
and(true, false) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
QDP
                                                                                                            ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B14(neg(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, neg(s(x1))), false), neg(s(x1)), y1, y2) at position [0] we obtained the following new rules [LPAR04]:

B14(neg(s(y0)), neg(0), y2) → COND_B14(and(true, false), neg(s(y0)), neg(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(neg(s(y0)), pos(x0), y2) → COND_B14(and(true, false), neg(s(y0)), pos(x0), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
QDP
                                                                                                                ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
B14(neg(s(y0)), neg(0), y2) → COND_B14(and(true, false), neg(s(y0)), neg(0), y2)
B14(neg(s(y0)), pos(x0), y2) → COND_B14(and(true, false), neg(s(y0)), pos(x0), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
QDP
                                                                                                                    ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
QDP
                                                                                                                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B14(pos(s(x0)), pos(0), y2) → COND_B14(and(false, less_int(pos(0), pos(x0))), pos(s(x0)), pos(0), y2) at position [0] we obtained the following new rules [LPAR04]:

B14(pos(s(s(x0))), pos(0), y1) → COND_B14(and(false, true), pos(s(s(x0))), pos(0), y1)
B14(pos(s(0)), pos(0), y1) → COND_B14(and(false, false), pos(s(0)), pos(0), y1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
QDP
                                                                                                                            ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(s(s(x0))), pos(0), y1) → COND_B14(and(false, true), pos(s(s(x0))), pos(0), y1)
B14(pos(s(0)), pos(0), y1) → COND_B14(and(false, false), pos(s(0)), pos(0), y1)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
QDP
                                                                                                                                ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B14(pos(s(x1)), neg(x0), y2) → COND_B14(and(false, less_int(pos(0), pos(x1))), pos(s(x1)), neg(x0), y2) at position [0] we obtained the following new rules [LPAR04]:

B14(pos(s(0)), neg(y1), y2) → COND_B14(and(false, false), pos(s(0)), neg(y1), y2)
B14(pos(s(s(x0))), neg(y1), y2) → COND_B14(and(false, true), pos(s(s(x0))), neg(y1), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
QDP
                                                                                                                                    ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
B14(pos(s(0)), neg(y1), y2) → COND_B14(and(false, false), pos(s(0)), neg(y1), y2)
B14(pos(s(s(x0))), neg(y1), y2) → COND_B14(and(false, true), pos(s(s(x0))), neg(y1), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
QDP
                                                                                                                                        ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)
B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38) we obtained the following new rules [LPAR04]:

COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
QDP
                                                                                                                                            ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38)) we obtained the following new rules [LPAR04]:

B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_int(neg(s(z1)), neg(s(z0))), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_int(pos(s(z1)), pos(s(z0))), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
QDP
                                                                                                                                                ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_int(neg(s(z1)), neg(s(z0))), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_int(pos(s(z1)), pos(s(z0))), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))

The TRS R consists of the following rules:

less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
and(true, false) → false
and(true, true) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
QDP
                                                                                                                                                    ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_int(neg(s(z1)), neg(s(z0))), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_int(pos(s(z1)), pos(s(z0))), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(neg(x), neg(y)) → minus_nat(y, x)
greatereq_int(neg(x), pos(s(y))) → false
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_int(neg(s(z1)), neg(s(z0))), plus_int(pos(s(0)), z2)) at position [1] we obtained the following new rules [LPAR04]:

B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(s(z0), s(z1)), plus_int(pos(s(0)), z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                        ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_int(pos(s(z1)), pos(s(z0))), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(s(z0), s(z1)), plus_int(pos(s(0)), z2))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
minus_int(neg(x), neg(y)) → minus_nat(y, x)
greatereq_int(neg(x), pos(s(y))) → false
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
QDP
                                                                                                                                                            ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_int(pos(s(z1)), pos(s(z0))), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(s(z0), s(z1)), plus_int(pos(s(0)), z2))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_int(pos(s(z1)), pos(s(z0))), plus_int(pos(s(0)), z2)) at position [1] we obtained the following new rules [LPAR04]:

B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(s(z1), s(z0)), plus_int(pos(s(0)), z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(s(z0), s(z1)), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(s(z1), s(z0)), plus_int(pos(s(0)), z2))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(s(z0), s(z1)), plus_int(pos(s(0)), z2)) at position [1] we obtained the following new rules [LPAR04]:

B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(z0, z1), plus_int(pos(s(0)), z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                    ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(s(z1), s(z0)), plus_int(pos(s(0)), z2))
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(z0, z1), plus_int(pos(s(0)), z2))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(s(z1), s(z0)), plus_int(pos(s(0)), z2)) at position [1] we obtained the following new rules [LPAR04]:

B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(z1, z0), plus_int(pos(s(0)), z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                        ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(z0, z1), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(z1, z0), plus_int(pos(s(0)), z2))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38) we obtained the following new rules [LPAR04]:

B10(pos(s(z0)), y_0, y_1) → B14(pos(s(z0)), y_0, y_1)
B10(neg(s(z0)), y_0, y_1) → B14(neg(s(z0)), y_0, y_1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(z0, z1), plus_int(pos(s(0)), z2))
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(z1, z0), plus_int(pos(s(0)), z2))
B10(pos(s(z0)), y_0, y_1) → B14(pos(s(z0)), y_0, y_1)
B10(neg(s(z0)), y_0, y_1) → B14(neg(s(z0)), y_0, y_1)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(z0, z1), plus_int(pos(s(0)), z2))
B10(neg(s(z0)), y_0, y_1) → B14(neg(s(z0)), y_0, y_1)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
QDP
                                                                                                                                                                                      ↳ QReductionProof
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(z0, z1), plus_int(pos(s(0)), z2))
B10(neg(s(z0)), y_0, y_1) → B14(neg(s(z0)), y_0, y_1)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QReductionProof
QDP
                                                                                                                                                                                          ↳ ForwardInstantiation
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(z0, z1), plus_int(pos(s(0)), z2))
B10(neg(s(z0)), y_0, y_1) → B14(neg(s(z0)), y_0, y_1)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [JAR06] the rule B10(neg(s(z0)), y_0, y_1) → B14(neg(s(z0)), y_0, y_1) we obtained the following new rules [LPAR04]:

B10(neg(s(x0)), neg(s(y_1)), x2) → B14(neg(s(x0)), neg(s(y_1)), x2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QReductionProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ ForwardInstantiation
QDP
                                                                                                                                                                                              ↳ Narrowing
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(z0, z1), plus_int(pos(s(0)), z2))
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B10(neg(s(x0)), neg(s(y_1)), x2) → B14(neg(s(x0)), neg(s(y_1)), x2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B15(neg(s(z0)), neg(s(z1)), z2) → B10(neg(s(z0)), minus_nat(z0, z1), plus_int(pos(s(0)), z2)) at position [1] we obtained the following new rules [LPAR04]:

B15(neg(s(s(x0))), neg(s(0)), y2) → B10(neg(s(s(x0))), pos(s(x0)), plus_int(pos(s(0)), y2))
B15(neg(s(0)), neg(s(s(x0))), y2) → B10(neg(s(0)), neg(s(x0)), plus_int(pos(s(0)), y2))
B15(neg(s(0)), neg(s(0)), y2) → B10(neg(s(0)), pos(0), plus_int(pos(s(0)), y2))
B15(neg(s(s(x0))), neg(s(s(x1))), y2) → B10(neg(s(s(x0))), minus_nat(x0, x1), plus_int(pos(s(0)), y2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QReductionProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ ForwardInstantiation
                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                              ↳ Narrowing
QDP
                                                                                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
B10(neg(s(x0)), neg(s(y_1)), x2) → B14(neg(s(x0)), neg(s(y_1)), x2)
B15(neg(s(s(x0))), neg(s(0)), y2) → B10(neg(s(s(x0))), pos(s(x0)), plus_int(pos(s(0)), y2))
B15(neg(s(0)), neg(s(s(x0))), y2) → B10(neg(s(0)), neg(s(x0)), plus_int(pos(s(0)), y2))
B15(neg(s(0)), neg(s(0)), y2) → B10(neg(s(0)), pos(0), plus_int(pos(s(0)), y2))
B15(neg(s(s(x0))), neg(s(s(x1))), y2) → B10(neg(s(s(x0))), minus_nat(x0, x1), plus_int(pos(s(0)), y2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QReductionProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ ForwardInstantiation
                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                              ↳ Narrowing
                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                  ↳ DependencyGraphProof
QDP
                                                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(neg(s(0)), neg(s(s(x0))), y2) → B10(neg(s(0)), neg(s(x0)), plus_int(pos(s(0)), y2))
B10(neg(s(x0)), neg(s(y_1)), x2) → B14(neg(s(x0)), neg(s(y_1)), x2)
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
B15(neg(s(s(x0))), neg(s(s(x1))), y2) → B10(neg(s(s(x0))), minus_nat(x0, x1), plus_int(pos(s(0)), y2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule B10(neg(s(x0)), neg(s(y_1)), x2) → B14(neg(s(x0)), neg(s(y_1)), x2) we obtained the following new rules [LPAR04]:

B10(neg(s(0)), neg(s(z0)), y_0) → B14(neg(s(0)), neg(s(z0)), y_0)
B10(neg(s(s(z0))), neg(s(x1)), y_1) → B14(neg(s(s(z0))), neg(s(x1)), y_1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QReductionProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ ForwardInstantiation
                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                              ↳ Narrowing
                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ Instantiation
QDP
                                                                                                                                                                                                          ↳ Narrowing
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(neg(s(0)), neg(s(s(x0))), y2) → B10(neg(s(0)), neg(s(x0)), plus_int(pos(s(0)), y2))
B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
B15(neg(s(s(x0))), neg(s(s(x1))), y2) → B10(neg(s(s(x0))), minus_nat(x0, x1), plus_int(pos(s(0)), y2))
B10(neg(s(0)), neg(s(z0)), y_0) → B14(neg(s(0)), neg(s(z0)), y_0)
B10(neg(s(s(z0))), neg(s(x1)), y_1) → B14(neg(s(s(z0))), neg(s(x1)), y_1)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule B14(neg(s(x1)), neg(s(x0)), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(x1)), neg(s(x0)), y2) at position [0] we obtained the following new rules [LPAR04]:

B14(neg(s(0)), neg(s(s(x0))), y2) → COND_B14(and(false, false), neg(s(0)), neg(s(s(x0))), y2)
B14(neg(s(s(x1))), neg(s(s(x0))), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(s(x1))), neg(s(s(x0))), y2)
B14(neg(s(x0)), neg(s(0)), y2) → COND_B14(and(true, false), neg(s(x0)), neg(s(0)), y2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QReductionProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ ForwardInstantiation
                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                              ↳ Narrowing
                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Narrowing
QDP
                                                                                                                                                                                                              ↳ DependencyGraphProof
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(neg(s(0)), neg(s(s(x0))), y2) → B10(neg(s(0)), neg(s(x0)), plus_int(pos(s(0)), y2))
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)
B15(neg(s(s(x0))), neg(s(s(x1))), y2) → B10(neg(s(s(x0))), minus_nat(x0, x1), plus_int(pos(s(0)), y2))
B10(neg(s(0)), neg(s(z0)), y_0) → B14(neg(s(0)), neg(s(z0)), y_0)
B10(neg(s(s(z0))), neg(s(x1)), y_1) → B14(neg(s(s(z0))), neg(s(x1)), y_1)
B14(neg(s(0)), neg(s(s(x0))), y2) → COND_B14(and(false, false), neg(s(0)), neg(s(s(x0))), y2)
B14(neg(s(s(x1))), neg(s(s(x0))), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(s(x1))), neg(s(s(x0))), y2)
B14(neg(s(x0)), neg(s(0)), y2) → COND_B14(and(true, false), neg(s(x0)), neg(s(0)), y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QReductionProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ ForwardInstantiation
                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                              ↳ Narrowing
                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Narrowing
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ DependencyGraphProof
QDP
                                                                                                                                                                                                                  ↳ Instantiation
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(neg(s(s(x0))), neg(s(s(x1))), y2) → B10(neg(s(s(x0))), minus_nat(x0, x1), plus_int(pos(s(0)), y2))
B10(neg(s(s(z0))), neg(s(x1)), y_1) → B14(neg(s(s(z0))), neg(s(x1)), y_1)
B14(neg(s(s(x1))), neg(s(s(x0))), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(s(x1))), neg(s(s(x0))), y2)
COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_B14(true, neg(s(z0)), neg(s(z1)), z2) → B15(neg(s(z0)), neg(s(z1)), z2) we obtained the following new rules [LPAR04]:

COND_B14(true, neg(s(s(z0))), neg(s(s(z1))), z2) → B15(neg(s(s(z0))), neg(s(s(z1))), z2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QReductionProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ ForwardInstantiation
                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                              ↳ Narrowing
                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Narrowing
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ DependencyGraphProof
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Instantiation
QDP
                                                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(neg(s(s(x0))), neg(s(s(x1))), y2) → B10(neg(s(s(x0))), minus_nat(x0, x1), plus_int(pos(s(0)), y2))
B10(neg(s(s(z0))), neg(s(x1)), y_1) → B14(neg(s(s(z0))), neg(s(x1)), y_1)
B14(neg(s(s(x1))), neg(s(s(x0))), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(s(x1))), neg(s(s(x0))), y2)
COND_B14(true, neg(s(s(z0))), neg(s(s(z1))), z2) → B15(neg(s(s(z0))), neg(s(s(z1))), z2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


COND_B14(true, neg(s(s(z0))), neg(s(s(z1))), z2) → B15(neg(s(s(z0))), neg(s(s(z1))), z2)
The remaining pairs can at least be oriented weakly.

B15(neg(s(s(x0))), neg(s(s(x1))), y2) → B10(neg(s(s(x0))), minus_nat(x0, x1), plus_int(pos(s(0)), y2))
B10(neg(s(s(z0))), neg(s(x1)), y_1) → B14(neg(s(s(z0))), neg(s(x1)), y_1)
B14(neg(s(s(x1))), neg(s(s(x0))), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(s(x1))), neg(s(s(x0))), y2)
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(B10(x1, x2, x3)) = 1   
POL(B14(x1, x2, x3)) = 1   
POL(B15(x1, x2, x3)) = 1   
POL(COND_B14(x1, x2, x3, x4)) = 1 + x1   
POL(and(x1, x2)) = 0   
POL(false) = 0   
POL(greatereq_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 0   
POL(neg(x1)) = 0   
POL(plus_int(x1, x2)) = 0   
POL(plus_nat(x1, x2)) = 0   
POL(pos(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = 1   

The following usable rules [FROCOS05] were oriented:

and(false, false) → false
and(true, false) → false



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QReductionProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ ForwardInstantiation
                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                              ↳ Narrowing
                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                  ↳ DependencyGraphProof
                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                      ↳ Instantiation
                                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                                          ↳ Narrowing
                                                                                                                                                                                                            ↳ QDP
                                                                                                                                                                                                              ↳ DependencyGraphProof
                                                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                                                  ↳ Instantiation
                                                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                                                      ↳ QDPOrderProof
QDP
                                                                                                                                                                                                                          ↳ DependencyGraphProof
                                                                                                                                                                                ↳ QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

B15(neg(s(s(x0))), neg(s(s(x1))), y2) → B10(neg(s(s(x0))), minus_nat(x0, x1), plus_int(pos(s(0)), y2))
B10(neg(s(s(z0))), neg(s(x1)), y_1) → B14(neg(s(s(z0))), neg(s(x1)), y_1)
B14(neg(s(s(x1))), neg(s(s(x0))), y2) → COND_B14(and(greatereq_int(neg(x0), neg(x1)), false), neg(s(s(x1))), neg(s(s(x0))), y2)

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(true, false) → false

The set Q consists of the following terms:

plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B10(pos(s(z0)), y_0, y_1) → B14(pos(s(z0)), y_0, y_1)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(z1, z0), plus_int(pos(s(0)), z2))
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
minus_int(pos(x), pos(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(neg(0), neg(y)) → true
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
greatereq_int(neg(x), pos(s(y))) → false
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
QDP
                                                                                                                                                                                      ↳ QDPOrderProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B10(pos(s(z0)), y_0, y_1) → B14(pos(s(z0)), y_0, y_1)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(z1, z0), plus_int(pos(s(0)), z2))
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(neg(x), pos(s(y))) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


B15(pos(s(z0)), pos(s(z1)), z2) → B10(pos(s(z0)), minus_nat(z1, z0), plus_int(pos(s(0)), z2))
The remaining pairs can at least be oriented weakly.

COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B10(pos(s(z0)), y_0, y_1) → B14(pos(s(z0)), y_0, y_1)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(B10(x1, x2, x3)) = x2   
POL(B14(x1, x2, x3)) = x2   
POL(B15(x1, x2, x3)) = x2   
POL(COND_B14(x1, x2, x3, x4)) = x3   
POL(and(x1, x2)) = 0   
POL(false) = 0   
POL(greatereq_int(x1, x2)) = 0   
POL(less_int(x1, x2)) = 0   
POL(minus_int(x1, x2)) = x1   
POL(minus_nat(x1, x2)) = x1   
POL(neg(x1)) = 0   
POL(plus_int(x1, x2)) = 0   
POL(plus_nat(x1, x2)) = 0   
POL(pos(x1)) = x1   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(s(x), 0) → pos(s(x))
minus_nat(0, s(y)) → neg(s(y))
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_int(pos(x), pos(y)) → minus_nat(x, y)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QDPOrderProof
QDP
                                                                                                                                                                                          ↳ RemovalProof
                                                                                                                                                                                          ↳ RemovalProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, pos(s(z0)), pos(s(z1)), z2) → B15(pos(s(z0)), pos(s(z1)), z2)
B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
B10(pos(s(z0)), y_0, y_1) → B14(pos(s(z0)), y_0, y_1)
B14(pos(s(x1)), y1, y2) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2)
COND_B14(true, pos(s(z0)), z1, z2) → B15(pos(s(z0)), z1, z2)
B14(pos(s(x1)), pos(s(x0)), y2) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(neg(x), pos(s(y))) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ RemovalProof
QDP
                                                                                                                                                                                          ↳ RemovalProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, pos(s(z0)), pos(s(z1)), z2, x_removed) → B15(pos(s(z0)), pos(s(z1)), z2, x_removed)
B15(pos(s(z0)), z1, z2, x_removed) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(x_removed, z2), x_removed)
B10(pos(s(z0)), y_0, y_1, x_removed) → B14(pos(s(z0)), y_0, y_1, x_removed)
B14(pos(s(x1)), y1, y2, x_removed) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2, x_removed)
B14(pos(s(x1)), pos(s(x0)), y2, x_removed) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2, x_removed)
COND_B14(true, pos(s(z0)), z1, z2, x_removed) → B15(pos(s(z0)), z1, z2, x_removed)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(neg(x), pos(s(y))) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: B15(pos(s(z0)), z1, z2) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(pos(s(0)), z2))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ DependencyGraphProof
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Narrowing
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ QDP
                                                                            ↳ UsableRulesProof
                                                                              ↳ QDP
                                                                                ↳ Narrowing
                                                                                  ↳ QDP
                                                                                    ↳ DependencyGraphProof
                                                                                      ↳ QDP
                                                                                        ↳ Narrowing
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
                                                                                              ↳ QDP
                                                                                                ↳ Narrowing
                                                                                                  ↳ QDP
                                                                                                    ↳ DependencyGraphProof
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Narrowing
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ DependencyGraphProof
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ UsableRulesProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ UsableRulesProof
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Rewriting
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Instantiation
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ DependencyGraphProof
                                                                                                                                                                              ↳ AND
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                ↳ QDP
                                                                                                                                                                                  ↳ UsableRulesProof
                                                                                                                                                                                    ↳ QDP
                                                                                                                                                                                      ↳ QDPOrderProof
                                                                                                                                                                                        ↳ QDP
                                                                                                                                                                                          ↳ RemovalProof
                                                                                                                                                                                          ↳ RemovalProof
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_B14(true, pos(s(z0)), pos(s(z1)), z2, x_removed) → B15(pos(s(z0)), pos(s(z1)), z2, x_removed)
B15(pos(s(z0)), z1, z2, x_removed) → B10(pos(s(z0)), minus_int(z1, pos(s(z0))), plus_int(x_removed, z2), x_removed)
B10(pos(s(z0)), y_0, y_1, x_removed) → B14(pos(s(z0)), y_0, y_1, x_removed)
B14(pos(s(x1)), y1, y2, x_removed) → COND_B14(and(greatereq_int(y1, pos(s(x1))), less_int(pos(0), pos(x1))), pos(s(x1)), y1, y2, x_removed)
B14(pos(s(x1)), pos(s(x0)), y2, x_removed) → COND_B14(and(greatereq_int(pos(x0), pos(x1)), less_int(pos(0), pos(x1))), pos(s(x1)), pos(s(x0)), y2, x_removed)
COND_B14(true, pos(s(z0)), z1, z2, x_removed) → B15(pos(s(z0)), z1, z2, x_removed)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(neg(x), pos(s(y))) → false
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Cond_b14(true, x0, x1, x2)
b15(x0, x1, x2)
b10(x0, x1, x2)
b14(x0, x1, x2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP

Q DP problem:
The TRS P consists of the following rules:

B15(sv14_14, sv23_37, sv24_38) → B10(sv14_14, minus_int(sv23_37, sv14_14), plus_int(pos(s(0)), sv24_38))
B10(sv14_14, sv23_37, sv24_38) → B14(sv14_14, sv23_37, sv24_38)
B14(sv14_14, sv23_37, sv24_38) → COND_B14(and(greatereq_int(sv23_37, sv14_14), less_int(pos(s(0)), sv14_14)), sv14_14, sv23_37, sv24_38)
COND_B14(true, sv14_14, sv23_37, sv24_38) → B15(sv14_14, sv23_37, sv24_38)

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
less_int(pos(s(x)), pos(0)) → false
less_int(pos(s(x)), neg(0)) → false
less_int(pos(s(x)), neg(s(y))) → false
less_int(pos(s(x)), pos(s(y))) → less_int(pos(x), pos(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
less_int(pos(0), pos(0)) → false
less_int(pos(0), pos(s(y))) → true

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
less_int(pos(0), pos(0))
less_int(pos(0), neg(0))
less_int(neg(0), pos(0))
less_int(neg(0), neg(0))
less_int(pos(0), pos(s(x0)))
less_int(neg(0), pos(s(x0)))
less_int(pos(0), neg(s(x0)))
less_int(neg(0), neg(s(x0)))
less_int(pos(s(x0)), pos(0))
less_int(neg(s(x0)), pos(0))
less_int(pos(s(x0)), neg(0))
less_int(neg(s(x0)), neg(0))
less_int(pos(s(x0)), neg(s(x1)))
less_int(neg(s(x0)), pos(s(x1)))
less_int(pos(s(x0)), pos(s(x1)))
less_int(neg(s(x0)), neg(s(x1)))

We have to consider all minimal (P,Q,R)-chains.